vignettes/vignette5.Rmd
vignette5.Rmd
library(dplyr, warn.conflicts = FALSE)
library(pmeasyr)
p <- noyau_pmeasyr(finess = '290000017',
annee = 2018,
mois = 12,
path = '~/Documents/data/mco',
tolower_names = TRUE,
n_max = Inf)
library(nomensland)
dicts <- get_dictionnaire_listes()
lgm <- get_all_listes('Chir ambu : 55 GM')
periodes <- list(
list(an = 2013, moi = 12),
list(an = 2014, moi = 12),
list(an = 2015, moi = 12),
list(an = 2016, moi = 12),
list(an = 2017, moi = 12),
list(an = 2018, moi = 12),
list(an = 2019, moi = 11))
result <- periodes %>% purrr::map_dfr(ana_r_ca_gestes_marqueurs, p = p, gestes_marqueurs = lgm)
result <- result %>% arrange(`Geste marqueur`, `Période`)
knitr::kable(head(result))
pivot_result <- result %>%
select(`Geste marqueur`, nofiness, taux_ambu, `Nb total`, `Période`) %>%
mutate(stat = paste0(scales::percent(taux_ambu), ' (', `Nb total`, ')')) %>%
select(-taux_ambu, - `Nb total`) %>%
tidyr::spread(`Période`, stat, '')
knitr::kable(head(pivot_result))
library(dplyr, warn.conflicts = FALSE)
library(pmeasyr)
p <- noyau_pmeasyr(finess = '290000017',
annee = 2018,
mois = 12,
path = '~/Documents/data/mco',
tolower_names = TRUE,
n_max = Inf)
library(nomensland)
ghmc_7r <- get_liste('chir_ambu_ghm_C_7_racines')
periodes <- list(
list(an = 2013, moi = 12),
list(an = 2014, moi = 12),
list(an = 2015, moi = 12),
list(an = 2016, moi = 12),
list(an = 2017, moi = 12),
list(an = 2018, moi = 12),
list(an = 2019, moi = 11))
result <- periodes %>% purrr::map_dfr(ana_r_ghm_ambu_dms, p = p, requete = ghmc_7r)
result <- result %>% arrange(niveau, Requete, `Période`)
knitr::kable(head(result))
pivot_result <- result %>%
select(niveau, Requete, nofiness, taux_ambu, `Nb total`, `Période`) %>%
mutate(stat = paste0(scales::percent(taux_ambu), ' (', `Nb total`, ')')) %>%
select(-taux_ambu, - `Nb total`) %>%
tidyr::spread(`Période`, stat, '')
knitr::kable(head(pivot_result))